

ANNUAL REPORT 2007

UIUC, June 12, 2007

Modeling of Clogging / Erosion of Nozzle Refractories

Oluwaseun A. Araromi

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Presentation

- Problem statement
- Model Description
- Model equation derivations and validations
- Post processing
- Picking diffusion coefficients
- Results and estimations
- Summary

•

- Nozzle Clogging commonly plagues the steel industry
- Clogging and erosion leads to detrimental inclusions in the final product
- Many complex coupled phenomena govern the process: turbulent flow, multi-component multi-phase thermodynamics, ion-diffusion (in bulk, solid-phase, liquid-phase, and grain-boundaries), chemical reactions (eg. graphite oxidation, spinel formation, etc.)

Clogging (conventional Alumina-Graphite nozzle)

Doloma nozzle

Donald Griffin, LWB, 2007

OA Araromi

3

Keith Rackers thesis, 1995

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Adding CaO can liquefy Al₃O₃ inclusions asting 240 230 Region of low melting point 22 210 LIQUID 200 (C). TEMPERATURE LIME + LIQUID 170 CAG+COR 150 CA2+ CA 140 LIME + C3A 130 C3A 247+C 3CoO.ALO3 Ca0-6AI203 CoO. AL203 C00-24403 12 Ca0. 7AL203 WEIGHT % Doloma nozzles utilize this concept to prevent clogging University of Illinois at Urbana-Champaign . Metals Processing Simulation Lab OA Araromi 4

- Use model to predict
 - The dissolution and sweeping away of alumina inclusions
 - Composition of released inclusions
 - Composition evolution and liquefaction of nozzle wall
 - Removal rate of CaO (wall erosion)
 - Particle removal rates

Model Description

8

Nozzle wall microstructure

Modeling Assumptions

- · Diffusion equation is solved for activity
- Assume activity = concentration everywhere in the domain
- Diffusion based on Al₂O₃ concentration, assumed to govern the diffusion process due to low diffusivity
- 1-D assumption (3-D inclusion effects incorporated)
- Assume inclusion particle is initially 100% Al₂O₃
- Assume semi infinite mediums (particle not fully liquid upon release)
- Assume only CaO and Al₂O₃ move by diffusion
- Effects of steel flow not included
- Only MgO and CaO present in new nozzle wall
- Only 3 phase's considered: Al₂O₃ "rich" (solid), CaO "rich" (solid) and liquid with associated diffusion coefficients
- Temperature gradients ignored across the domain
- Concentration on weight basis

Finite Element Equations

Galerkin Finite Element Equation (analogous with heat transfer):

2 Element domain

Finite Element Equations

 Re-arrange in terms of concentration at current time step

$$\begin{bmatrix} C_{i-1} \\ C_{i} \\ C_{i+1} \end{bmatrix}_{acc}^{a} = \Delta t \begin{bmatrix} C \end{bmatrix}^{-1} \left(\frac{1}{\Delta t} \begin{bmatrix} C \end{bmatrix} - \begin{bmatrix} k \end{bmatrix} \right) \begin{bmatrix} C_{i-1} \\ C_{i} \\ C_{i+1} \end{bmatrix}_{old}^{a}$$

$$\begin{bmatrix} C_{i-1} \\ C_{i} \\ C_{i+1} \end{bmatrix}_{acc}^{a} = \Delta t \begin{bmatrix} \frac{2}{(AL)_{j}} & 0 & 0 \\ 0 & \frac{2}{((AL)_{j} + (AL)_{j+1})} & 0 \\ 0 & 0 & \frac{2}{(AL)_{j+1}} \end{bmatrix} \begin{bmatrix} \frac{1}{2\Delta t} (AL)_{j} - \left(\frac{AD_{a}}{L}\right)_{j} & + \left(\frac{AD_{a}}{L}\right)_{j} & 0 \\ + \left(\frac{AD_{a}}{L}\right)_{j} & \frac{1}{2\Delta t} ((AL)_{j} + (AL)_{j+1}) - \left(\frac{AD_{a}}{L}\right)_{j} - \left(\frac{AD_{a}}{L}\right)_{j+1} & + \left(\frac{AD_{a}}{L}\right)_{j+1} \end{bmatrix} \begin{bmatrix} C_{i-1} \\ C_{i} \\ C_{i+1} \end{bmatrix}_{acc}^{a} = \Delta t \begin{bmatrix} C_{i-1} \\ C_{i$$

Assuming constant area,

$$\begin{bmatrix} C_{i-1} \\ C_{i} \\ C_{i+1} \end{bmatrix}_{new}^{\alpha} = \begin{bmatrix} 1-2\beta_{j} & 2\beta_{j} & 0 \\ 2\beta_{j} \left(\frac{L_{j}}{L_{j}+L_{j+1}}\right) & 1-2\beta_{j} \left(\frac{L_{j}}{L_{j}+L_{j+1}}\right) - 2\beta_{j+1} \left(\frac{L_{j+1}}{L_{j}+L_{j+1}}\right) & 2\beta_{j+1} \left(\frac{L_{j+1}}{L_{j}+L_{j+1}}\right) \end{bmatrix} \begin{bmatrix} C_{i-1} \\ C_{i} \\ C_{i+1} \end{bmatrix}_{old}^{\alpha} \\ \beta = \frac{D_{\alpha} \Delta t}{L^{2}}$$

asting

Model Validation 1

• Finite element solution compared analytical Solution for single species diffusion and single diffusivity

Model Validation 1

Solutions match

26

Volume of frustums:

$$Volume = \frac{\pi L}{12} (b_1^2 + b_1 b_2 + b_2^2)$$
$$L = (x_2 - x_1)$$
$$Volume = \frac{\pi (x_2 - x_1)}{12} (b_1^2 + b_1 b_2 + b_2^2)$$

• Area,

$$Area = \frac{\pi}{12} \left(b_1^2 + b_1 b_2 + b_2^2 \right)$$

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

OA Araromi 37

Choosing Diffusivities

•

Published diffusion coefficients vary substantially

					Up to 6 orders of					
	Magnitude Difference									
Species	Diffusiviti	Es in solid	Temn range f	ags :D.em²s ⁻¹	Temn K	Temn C	Oxide/stag	Beference		
MaO				7.90E-05	1823	1550	36Ca0/214/203/42Si02	CMU research		
ő			1450-1700	3.00E-15	1873	1600	pute solid Al2O3	EPSRC/ Robin Grimes		
0			1450-1700	3.00E-17	1773	1500	Fure solid Al2O3	EPSRC/ Robin Grimes		
0	167.2	80.7	850-1000	2.34E-12	1273	1000	Pure solid Al203	R.G. REDDY, X. VEN, and I.C.I. OKAFOR, MTB VOLUME 31A, DECEMBER 2000		
0	1930	152.0	1200-1800	3.54E-16	1773	1500	Single xal x12O3	Y. Dishi and W.D. Kingerg: J. Chem. Phys., 1960, vol. 33, pp. 480-86.		
0	2.0	110.0	1200-1800	5.52E-14	1773	1500	polycrstalline Al2O3	Y. Dishi and W.D. Kingery: J. Chem. Phys., 1960, vol. 33, pp. 480-86.		
0	6800.0	62.0	750-1000	1.91E-10	1000	727	O and Ti ipterdiffusivity in TiO2	R.G. REDDY, X. VEN, and I.C.I. OKAFOR, MTB VOLUME 32A, MARCH 2001-491		
0	2.0E-03	60.0	710-1300	1.55E-16	1000	127	O in TiO2	R. Haul and G. Dumbgen: J. Phys. Chem. Solids, 1965, vol. 26, pp.1-10		
0	870.0	55.6	593-760	6.27E-10	1000	727	O in TiO2	J. Unnam, R.N. Shenoy, and R.K. Clark: Oxid. Met., 1986, vol. 26 (3-4), pp. 231-52.		
0	0.1800	83.6	1096-1333	4.50E-18	1100 /	827	O in TiO2	V.D. Kingery, H.K. Bowen, and D.R. Uhlmann: Introduction to Ceramics.		
0				1.26E-17	1667	1394 /	O in pure MgO	Yang and Flynn		
0	1.00E-05	54.0		2.20E-12	1273	1500	pure solid NiO	Geiger and Pourier		
0	1.00E+11	146.0		9,005,09	1773	1500	pure solid Fe2O3	Geiger and Pourier		
Ca				4.90E-06	1773	1500	51CaO/10AI2O3/39SiO2	Multicomponent Diffusion in Molten Slags M.D. DOLAN and R.F. JOHNSTON		
Ca				2000-008	1773	/ 1500	Optical basicity = 0.68	DOLAN, M.D. and JOHNSTON, R.F.		
Ca				(3.16E-12)	1667 /	1394	Ca in pure MgO	Yang and Flynn		
Ca				4.40E-08	1272	1000	Ca in FeOx	Fukuyama, MTB 33B 2002		
Ca				2 005 09	\$273	1000	pure solid CoO	Geiger and Pourier		
AI2O3				(1.00E-12)	1853	1580	solid Al2O3	T.B. Braun, J.F.Elliott and M.C. Flemings: MTB, 10B (1979), 171.		
AI2O3				-	1823	1550	16CaO/19.3AI2O3/64.5SiO2	MONAGHAN, B.J., NIGHTINGALE, S.A., CHEN, L., and BROOKS, G.A.		
AI2O3				(1.60E-06)	1853	1580	28CaO/23.7AI2O3/48.3SiO2	MONAGHAN, B.J., NIGHTINGALE, S.A., CHEN, L., and BROOKS, G.A.		
AI	4.30E+04	85.1		5.07E-06	1873	1600	43.5CaO/10AI2O3/46.5SiO2	J. Henderson, L. Yang and G. Derge: Trans. Metall. Soc. AIME, 221 (1961), 56.		
AI	5.40E+04	60.0		5.40E-03	1873	1600	38.6CaO/20AI2O3/41.4SiO2	J. Henderson, L. Yang and G. Derge: Trans. Metall. Soc. AIME, 221 (1961), 56.		

- Partly due to solid vs. liquid diffusion
- Liquid diffusion coefficient highest

Rob Nunnington, LWB

•

Choosing Diffusivites

However CaO on average has the highest diffusivity:

nuous

100	Numm	igion	, LVVD		/						4.00E-06 3.00E-07	1545 1340	CAS 40/20/40
	Self diffus	ion coeffi	cients in liquid	nure snecies	and slags (N	lills in Sla		-	22	1450 1500	1.90E-06	1500	40/20/40
Snecies]. cm ² s ⁻¹	F. keal	Temp range			Temp			50	1495-1500	0.00E-06 7.00E-07	1500	560/469
AI	5 27	£0.0	1290.1407	1045-07	1700	14.27			50	1420-1485	8.005-07	1500	490/510
2	0.0023	21.2	2050-2300	6 58E-06	1923	1927	Si		70	1350-1450	100E-07	1450	CAS
<u></u>	0.0025	10.7	1420-1550	344E-04	1823	1550	"			1000-1400	2005-07	1500	40/20/40
ň	0.0162	16.6	1420-1550	165E-04	1823	1550					2.00E-07	1470	40/20/40
ñ	8.3176	22.9	1000-1200	185E-03	1373	1100					3.00E-08	1360	40/20/40
ō	6606934	97.5	1550-1650	2.77E-05	1873	1600	0	4.7	85	1350-1450	6.00E-06	1450	CAS
ō	12303	87.2	1550-1650	8.10E-07	1873	1600					1.90E-05	1500	40/20/40
Ca	22.91	60.0	1420-1515	7.99E-07	1758	1485					4.00E-05	1550	40/20/40
Ca	0.71	36.0	1420-1550	2.59E-05	1773	1500		-			2.00E-06	1375	40/20/40
Ca	0.21	31.9	1400-1600	2.44E-05	1773	1500	AI				7.00E-07	1480	40/20/40
				\smile							2.50E-07	1410	40/20/40
								5.4	60	1400-1520	7.00E-07	1500	44/12/44
							Fe		40	1250-1305	7.90E-05	1250	61FeO/39SiC
											1.20E-04	1304	
							S				2.70E-06	1580	40/20/40
											8.50E-07	1440	40/20/40

 Assume CaO diffuses fast enough to satisfy charge balance, based on local Al2O3 concentration (post processing)

Model Inputs:

- Model inclusion as spherical particle
- Inclusion diameter = 100 microns
- Contact region with nozzle wall = 20 microns diameter (Ratio of max inclusion area to contact area =25:1)
- Initial nozzle wall composition is 90% CaO, 10% MgO
- Critical liquid layer thickness before particle detachment = 20 microns
- All liquid removed with particle
- Removed particle immediately replaced by another
- Temperature 1600 C

0 0 Atinuous casting Consortium	Results – Stage	1
Animation	Concentration Plot	
0.9	ALO3 Cado Cado	
0.8		-
0.7		-
tration		
0.5 20 0.5 20 0.5 20 0.5		
0.3		-
0.2		-
0.1		
0.5	04 0.3 0.2 0.1 0 Distance mm	 0.1

•

Estimation of CaO removal rate

•

60 mm

Estimation of Inclusion limits

 Can express inclusion limit in terms of ppm: For the SEN dimensions as shown on the previous slide, Inclusion limit = $1.88 \times 10^5 \times 4.17 \times 10^{-8}$ = 7.84 x10⁻³ kg/min Steel flow rate = 1780 kg/min (as shown on slide 54) Inclusion limit (ppm) = $7.84 \times 10^{-3}/1780 \times 10^{6}$ = <u>4.40 ppm</u> (Note: This estimate is conservative, as model assumes a continuous Al₂O₃ source) 57 University of Illinois at Urbana-Champaign Metals Processing Simulation Lab OA Araromi Interpreting Results nuous Assume: - a steel flow rate of 1780 kg/min Steel upstream inclusion content of 40 ppm On average 10% of the inclusions come in contact with nozzle wall (4 ppm)

- Casting time = 190 mins
- Nozzle walls can liquefy 4.4 ppm inclusions, so should **not** clog in this time

Summary

- 1-D Numerical model of ceramic ion diffusion developed for Al₂O₃ - CaO - MgO refractory systems
- Model tracks the inclusion particle interaction with a nozzle and simulates the stages of inclusion deposition and removal, wall liquefaction and inclusion entrainment and the insufficient liquefaction of inclusions leading to conventional clogging.
- The model provides a frame work for studying composition evolution and the behavior of nozzle/inclusion interactions
- Model results provide estimations of:
 - The removal rate of CaO from doloma nozzle wall
 - The lower limit on the amount of inclusion the nozzle can handle before clogging is likely.

Metals Processing Simulation Lab

- The maximum wall erosion

University of Illinois at Urbana-Champaign

Acknowledgments

- Continuous Casting Consortium Members (Nucor, Postech, LWB Refractories, Algoma, Corus, Labein, Mittal Riverdale, Baosteel, Steel Dynamics)
- Roy Maske (former student)
- Special thanks to Rob Nunnington and Donald Griffin of LWB Refractories for their help.

59

OA Araromi